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Summary. In this paper, the dynamic interaction between two collinear cracks in a piezoelectric material 
under harmonic anti-plane shear waves is investigated. By using the Fourier transform, the problem can 
be solved with two pairs of triple integral equations. These equations are solved using Schmidt's method. 
This process is quite different from that adopted previously. Numerical examples are provided to show 
the effect of the geometry of the interacting cracks, the shear stress wave velocity of the piezoelectric 
materials, and the frequency of the incident wave upon the dynamic stress intensity factor of the cracks. 

1 Introduction 

It is well known that piezoelectric materials produce an electric field when deformed and 
undergo deformation when subjected to an electric field. The coupling nature of piezoelectric 
materials has attracted wide applications in electric-mechanical and electric devices, such as 
electric-mechanical actuators, sensors and structures. When subjected to mechanical and elec- 
trical loads in service, these piezoelectric materials can fail prematurely due to defects, e.g. 
cracks, holes, etc. arising during their manufacture process. Therefore, it is of great impor- 
tance to study the electro-elastic interaction and fracture behaviors of piezoelectric materials. 
Moreover, it is known that the failure of solids results from the final propagation of the 
crack, and in most cases, the unstable growth of the crack is brought about by the external 
dynamic loads. So, the study of the dynamic fracture mechanics of piezoelectric materials is 
much more urgent in recent research. 

Recently, the dynamic response of piezoelectric materials and the failure modes have 
attracted more and more attention from many researchers ([9], [12], [17], [18], [23]). A finite 
crack in an infinite piezoelectric material strip under anti-plane dynamic electromechanical 
impact was investigated with the well-established integral transform methodology [23]. Axi- 
symmetric vibration of a piezo-composite hollow cylinder was studied by Paul and Nelson 
[17]. The dynamic representation formulae and fundamental solutions for piezoelectricity had 
been proposed earlier by Khutoryansky and Sosa [9]. The dynamic response of a cracked 
dielectric medium in a uniform electric field was studied by Shindo et al. [18]. Narita and 
Shindo [12] also carried out an analysis of the scattering of anti-plane shear waves by a finite 
crack in piezoelectric laminates. However, the dynamic behavior of two cracks in piezoelectric 
materials has not been studied. 
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In the present paper, the interaction between two collinear symmetrical cracks subject to 
harmonic anti-plane shear waves in piezoelectric materials was investigated using a somewhat 
different approach by a new method, namely Schmidt's method [10]. It is a simple and con- 

venient method for solving this problem. Fourier transform is applied, and a mixed boundary 
value problem is reduced to two pairs of triple integral equations. In solving the triple integral 
equations, the crack surface displacement and the electric potential are expanded in a series 
using Jacobi's polynomials, and Schmidt's method [10] is used. This process is quite different 
from that adopted in references [2], [4], [6], [9], [12]-[18], [20]-[25], The form of solution is 

easy to understand, The main purpose of the articIe is to dvelop a new theoretical model to 
investigate the dynamic behavior of piezoelectric materials. Accordingly, the paper addresses 
the different algorithms. The theoretical formulations governing the steady-state problem are 

based upon the use of integral transform techniques. The resulting dynamic stress intensity 
factors at the interacting cracks are obtained by Schmidt's method. Numerical examples are 
provided to show the effect of the geometry of the interacting cracks, the shear stress wave 
velocity of the piezoelectric materials and the frequency of the incident wave upon the result- 
ing dynamic stress intensity factors. 

2 Formulation of the problem 

Consider an infinite piezoelectric body containing two collinear symmetric cracks of length 
1-b along the x-axis. 2b is the distance between two cracks. The piezoelectric boundary-value 
problem for anti-plane shear is considerably simplified if we consider only the out-of-plane 
displacement and the in-plane elastic fields, see Fig. 1. Let cv be the circular frequency of the 
incident wave. In what follows, the time dependence of all field quantities assumed to be of 
the form exp ( - iw t )  will be suppressed but understand. We further suppose that the two faces 
of the crack do not come into contact during vibrations. The constitutive equations can be 
written as 

T z k  : C44W,k q- e15r , (1) 

D k  = e lhw,k  - e l l e , k ,  (2)  

where ~%, D~(k = z, y) are the anti-plane shear stress and in-plane electric displacement, 
respectively, c44, e15, ell are the shear modulus, piezoelectric coefficient and dielectric para- 
meter, respectively, w and r are the mechanical displacement and electric potential. 

~X 

Fig. 1. Collinear cracks in a piezoelectric material body 
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The anti-plane governing equations for piezoelectric materials are [12] 

e44~v2w -[- e15~72(~ : Q c ~ 2 w / l O t  2 , 

elsr72w - ell V~ r = O, 
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(3) 

(4) 

where V B = c32/0x 2 + 02/Oy B is the two-dimensional Laplace operator and g is the mass den- 
sity of the piezoelectric materials. Body force, other than inertia, and the free charge are 
ignored in the present work. It is worth mentioning that the field equations (3) and (4) for 
anti-plane deformation can also be derived by considering the so-called Bleustein-Gulayev SH 
waves. Because of the assumed symmetry in geometry and loading, it is sufficient to consider 
the problem for 0 < x < oc, 0 _< y < oc only. 

A Fourier transform is applied to Eqs. (3) and (4). Assume that the solution is 

~(s, y, t) = A(s)e zY, (5) 

where ~/= ~ s  2 - (W/CsH) 2 , eSH V/~-/k9, pt ---- C44 @ e~5 �9 eSH is the shear stress wave velocity 
E'll 

of the piezoelectric materials. A(s) is an unknown function, and a superposed bar indicates 
the Fourier transform throughout the paper, e.g., 

](s) = 7 f (x)  e-is~ dx. (6) 
O0 

Inserting Eq. (5) into Eq. (4), it can be assumed 

~(.S, y ,  ~) (315 't.~(8, y , / ; )  --~ J~(8) e -2y , 
s 

(7) 

tions of the present problem are: 

%~(x, 0, t) = -~0, b _</xl _< 1, 

Dy(x,O, t )  = - D o ,  b <_ I~1 -< 1, 

w(x,O, t D = r  ]x ]<b ,  I x ] > 1 ,  

~(x,y ,~)=r for (x2+y2)~/2 . 

(8) 

(9) 

(io) 

(11) 

In this paper, the wave is vertically incident, and we only consider that To and Do are positive. 
The problem therefore reduces to the determination of the unknown functions A(s) and B(s). 
Because of symmetry, the boundary conditions can be applied to yield two pairs of triple 
integral equations: 

Oo 

2 f A(s) cos(sx)ds 0 
7F 

0 

O < x < b  and x > l ,  (12) 

O0 

_2 7A(s) cos (sx) ds = ; To + el.sDo 
7r c1.1 ] 

0 

b < x < 1, (13) 

where B(s) is an unknown function. 
As discussed in Narita's [12], Shindo's [19] and Yu's [23] references, the boundary condi- 
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and 

71" 
0 

O<_x<b and z > l ,  (14) 

2 f s B ( s )  cos (sz) ds - Do 
?r s 

0 

b < z < 1. (15) 

To determine the unknown functions A(s), B(s), the above two pairs of triple integral equa- 
tions (12)-(15) must be solved. 

3 Solution of the triple integral equation 

For solving the above two pairs of triple integral equations, Schmidt's method [10] can be 
used to solve the triple integral equations (12)-(15). The displacement w and the electric 
potential r can be represented by the following series: 

1 

w(x,O,t) = 0 ,  for x >  1, x <  b, y = 0 ,  (17) 

1 

0 

r t ) = 0 ,  for x > l ,  x < b ,  y = 0 ,  (19) 

where a~ and b~ are unknown coefficients to be determined and p,!1/2,1/2)(z) is a Jacobi poly- 
nomial [5]. The Fourier transformation of Eqs. (16) and (18) is [3] 

n = 0  

~ 0 (  ) ( 1 2 b )  /~(8) = (~(8,0, t ) -  e1~'5 ~U)(8,0, t ) =  b n (315 a~ B~Gn(S) 1 &+l s - -  , (21)  
s = E11 8 

B~ = 2 , / ~  ~! , (22) 

,~ l + b  

G~(s) = .,~-~ [ 1+ b'~ (23) 
( - 1 ) ~ - s i n ~ s ~ - ) ,  n = 1 , 3 , 5 , 7 , . . . ,  

where F(x) and J,(x) are the Gamma and Bessel functions, respectively. 
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Substituting Eqs. (20) and (21) into Eqs. (12)-(15), respectively, Eqs. (12) and (14) can be 
automatically satisfied, respectively. Then the remaining Eqs. (13) and (15) reduce to the form 
after integration with respect to z in [b, x], respectively: 

OO 

oo i ( 1 7 b )  ~r E a , B ,  s - l [ l + f ( s ) ] G , ( s ) J ~ + l  s - -  [ s i n ( s x ) - s i n ( s b ) ] d s = ~ m o ( l + A ) ( x - b ) ,  
7z~O 0 

0 

O0 

bn r an J~n 8 -1Gn(8 )  Jn+l 8 - -  [sin (sx)  - sin (sb)] ds - (x - b), 
= s 2s 

0 (25) 
where A = e15Do, f ( s )  = 7 -  s (26) 

C l l T  0 8 

The semi-infinite integral in Eqs. (24) and (25) can be modified as [5] 

j ~111+s f(')] J'~+' (s 17~b)cos (s 1~_b)sin (sx)ds 
0 

[ 
2(n+ 1) i f  l + b  I1" l+b'~ 2 [ 1 -  b'~2/n+l 

-t-c) 
0<3 

+j.-'f(s) Jn+,(slT~b)eos(s~)sin(sx)ds, 
0 

sin [(n + 1) sin-1 (-1 ~ b %2x)]} 

(27) 

jl[l~-f(8)] Jn§ 1T) sin (8 ~) sin(Sx) d8 
0 

,,, {co.[,.+,,.,. 1 - b'~ n + l  2 } 
r 1+, , ~x+~+i(x+~)l+b, 2 n+' 

OO 

-t- is  If(.)J,~+i(.17~b)sin(.l~b)sin(.x)d.. 
0 

(28) 

For a large s, the integrands of the semi-infinite integral in Eqs. (27) and (28) are almost 1/8 2, 
so the semi-infinite integral in Eqs. (27) and (28) can be evaluated numerically by Filon's 
method [1]. Thus, the semi-infinite integral in Eqs. (24) and (25) can be evaluated directly. 
Equations (24) and (25) can now be solved for the coefficients a~ and b~ by Schmidt's method 
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[10]. For  brevity, Eq. (24) can be rewritten as (Eq. (25) can be solved using a similar method 

as following) 

~a~En(x) : U ( x ) ,  b < x <  1, (29) 

where E,~(x) and U(x) are known functions, and the coefficients as are unknown and will be 

determined. A set of  functions P~(x) which satisfy the orthogonality condition 

1 1 

f Prn(x)P~(x) dx = N~m~, N~ = f P~'(x)dx (30) 
b b 

can be constructed from the func t ion /~ (x ) ,  such that  

~-~ M~. Z~(x) P,~(x) = ~ , 
i=0 

(31) 

where M# is the cofactor of  the element dij of D,., which is defined as 

D~ 

d00, d01,  d 0 2 , . . .  ~don 

dl0, din, d12, �9 �9 �9 din 

d20, d21, d~2,. . . ,  d2~ 

dno,dnl,dn2,...,dnn 

1 

d~j = f E~(~) E.(~) d~. 
b 

(32) 

Using Eqs. (29) (32), we obtain 

o o  

as = E qJ Mw (33) 
j=n M j j  

1 

with qj U(x) Pj(x) dx. (34) 

b 

4 Intensity factors 

The coefficients a,~ and b~ are known, so that  the entire stress field and the electric displace- 
ment  can be obtained. However,  in fracture dynamic mechanics, it is of  importance to deter- 
mine the stress ~-vz and the electric displacement Dy in the vicinity of  the crack's tips. ~-vz and 
D v along the crack line can be expressed respectively as 

o o  

71" n=O 
0 

oo 

D . ( x , o , t )  2 ( . , , a . - . , , b . ) B .  C,,(.)J.+I . - -  co.(x.)d. .  (36) 
9]- n : O  

0 
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Observing the expression in Eqs. (35) and (36), the singular portion of  the stress field and the 
singular portion of the electric displacement can be obtained respectively from the relation- 
ships [5] 

COS = 1{COS [ S ( ~  b cos(s ) 
s i n ( s l ~ b )  c o s ( s x ) = ~ { s i n l s ( l ~ + 2 b  

--x)]  4. oo~ [~(s 4. ~)] }, 
--x)]+ r , . ' l +b  

sin I s / ~ - - -  4. x ) l  } , 

oo [ cos  In sin -1(b/a)] 

/ " J~(sa) " 4 ~ -  b2 ' a > b 
(b~) 

I 
COS ds 

a n sin (n7c/2) 
0 b2v/~5~_ a2 [b + ~ ]  ~ ,  b > a  

sin [nsin l(b/a)] 
~ _ b 2  , a > b  

f J~ (sa) sin (bs) ds = a ~ cos (nTr/2) 

The singular portion of  the stress field and the singular portion of  the electric displacement 
can be expressed respectively as follows: 

2s 
T = - (c44a~ + e15b,~) B~H~(b, x ) ,  (37) 

n=0 

2 oo 

D = -- ~ (~lsa~ - ~.b~)B~H~(b, ~), 
"K n=O 

(3s) 

where H~(b,x) = - F l ( b , x , n ) , n = O ,  1 , 2 , 3 , 4 , 5 , . . . ( f o r  0 < x < b ) ,  

I-L~(b,x) = ( -1)~+lF2(b ,x ,n) ,  

['1 (b, x, n) = 

n=0, i,2,3,4,5,.. , 

2(1 - b) ~+1 

(for 1 < x) ,  

F 2 ( b , x , n )  = 

~/(1 + b - 2x) 2 - (1 - b) 2 [1 + b - 2z + ~/(1 + b - 2x) 2 - (1 - b) 2 ]n+l 

2(1 - b) ~+1 

i ( 2 x -  1 - b) 2 - (1 - b) 2 [ 2 x -  1 - b +  i ( 2 x -  1 - b) 2 - (1 - b) 2]n+l 

At the left end of  the right crack, we obtain the stress intensity factor KL as 

~1(12 s (c44a n 4- e l s b n ) B  n . ( 3 9 )  KL x-~b-lim ~/27r(b - x ) . 7  = L b) ~=0 

At the right end of  the right crack, we obtain the stress intensity factor KR as 

KR = lim ~/2~r(x - 1 ) . 7  = (--1) ~ (c44a~ § ez5b~) B~. (40) 
x~b+ (1 L b) ~=0 
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At the left end of the right crack, we obtain the electric displacement intensity factor D r  as 

DL = x---~blim 2 ~ -  x) .  D = ~r(12% b) ~n=0 (el5an -- C l l b n ) B n -  (41) 

At the right end of the right crack, we obtain the electric displacement intensity factor DR as 

I~(1 ~ ~ (__]_)n (e15Gn _ _  Cllbn)/~n. (42) D R = x--*l +lim X / 2 ~  - 1). D = ~- b) ,,~=0 

5 Numerical calculations and discussion 

The dimensionless stress intensity factors KL and KR are calculated numerically. From the 
references (see e.g., [7], [8], [26], [27]), it can be seen that Schmidt's method is performed satis- 
factorily if the first ten terms of the infinite series to Eq. (29) are obtained. The solution of 

two collinear cracks of arbitrary length a - b can easily be obtained by a simple change in the 
numerical values of the present paper (a > b > 0), i.e., it can use the results of the collinear 
cracks of length 1 - b/a in the present paper. The solution of this paper is suitable for the 
arbitrary length of two collinear cracks. The results of the present paper are shown in Figs. 2 
to 7. Form the results, the following observations are very significant: 

(i) The dynamic stress intensity factors not only depend on the crack length, the electric 
loading and the frequency of the incident wave, but also depend on the shear stress wave velo- 
city of the piezoelectric materials. 

(ii) The effects of the two collinear cracks decrease when the distance between the two col- 
linear cracks increases. 

(iii) The stress intensity factor becomes big with increasing electric loading, in other 
words, the electric field will increase the magnitude of the stress intensity factor. This is due to 
the coupling between the electric and the mechanical fields. 

(iv) The dynamic response of the electric field on the hand is independent of the external 
mechanical load. It is coherent with the applied dynamic elastic load. 

(v) It can be concluded that the dynamic elastic field will promote the propagation of the 
crack at different stages of the loading process. 
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Fig. 2. Stress Fig. 3. Stress intensity factors versus A for 
a3/ esH b ~ 0.1, a3 / csH = 0.5 
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6 Conclusions 

Fracture is one of  the properties that limits the use of  piezoelectric materials as sensors and 

actuators in smart material and structure technology. We developed an electro-elastic fracture 
mechanics theory to determine the singular stress and electric fields near the crack tip for 

piezoelectric materials having two finite cracks under longitudinal shear waves. The anti- 
plane electro-elastic problem of  a piezoelectric material with two collinear cracks has been 

analyzed theoretically. The traditional concept of  linear elastic fracture mechanics is extended 

to include the piezoelectric effects, and the results are expressed in terms of  the stress intensity 
factors, The developed method is applied to illustrate the fundamental behavior of  the inter- 
acting cracks in piezoelectric materials under dynamic loading. Furthermore, the effect of  the 

geometry of  the interacting cracks, the shear stress wave velocity of  the piezoelectric materials, 
and the frequency of  the incident wave upon the dynamic stress intensity factor of  the crack 

are examined and their influence discussed. This study reveals the importance of  the electro- 

mechanical coupling terms upon the resulting dynamic stress intensity factors. 
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